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Abstract

Dynamic stability in the large is considered subject to the vibration protecting mechanisms (VPMs)
containing elastic links with ‘‘negative’’ stiffness. This analysis plays an important role in the estimation of
an opportunity for improvement of vibration protection in the almost insuperable infra-low-frequency
band employing these mechanisms. The Lyapunov largest exponent and Poincar!e map of phase trajectories
methods have been used with this purpose in mind. Numerical results demonstrate a visualization
indicating the effectiveness of the methods in comparing stiffness control mechanisms (SCMs) of different
types in terms of their predisposition to chaotic motion as well as to analyze dynamic stability of the VPMs
with small (quasi-zero) stiffness. Also, the methods have been applied to predict behavior of controlled
suspension mostly used for driver seats and modified with the help of the SCM. A criterion is formulated of
dynamic stability of modified suspension.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Some Systems are known to have behavior that cannot be predicted by methods of classical
mechanics once motion has begun. These systems are chaotic. The multiple degrees-of-freedom
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systems or systems with distributed parameters can be referred to as chaotic. For instance,
turbulence in the hydrodynamic systems is an example of harmful chaotic motion [1]
A few relatively simple mechanical systems have a predisposition to chaotic motion as well. At

the same time, these phenomena could in certain cases be used as a helpful feature. Among them
there is a wide class of elastic systems with non-adjacent stable equilibria. The theoretical concepts
of motion and results of study of some systems have been published, in particular, in Refs. [2–5].
A number of similar elastic systems have been designed and applied, in the form of samples or of
small-scale production, to vibration protection [6,7].
Recent research led to synthesis of a new type of elastic systems [8–10]. These results help to

extend the concept about the helpful properties of elastic systems immanently predisposed to
chaotic motion and seem to be important enough with respect to progress in vibration protection
of a man and equipment, e.g., in transport.
This work presents comparative evaluation of immanence to chaos in the elastic systems of

various types using the Lyapunov largest exponent and Poincar!e map of trajectories methods. A
few aspects of dynamic stability in the large are considered in autonomous and non-autonomous
motion of elastic systems with variable torsion ‘‘negative’’ as well as small (quasi-zero) stiffness.
Numerical results demonstrate that the methods allow to analyze inherent instability of elastic
systems of these types and to estimate an opportunity of steady motion of a vibration protecting
mechanism (VPM) containing elastic system with negative stiffness. This approach has been
applied to analyze motion of pneumatic controlled suspension for a driver seat modified with the
help of elastic system with variable torsion negative stiffness. A few features, being found out
experimentally, of the suspension vibration in the infra-low-frequency band have been verified
with these methods.

2. Subject of inquiry

Two types of elastic systems with non-adjacent stable equilibria are considered. Each system is
presented in the form of a stiffness control mechanism (SCM) containing elastic link with negative
stiffness. A spring or a set of springs, including additional connecting links absolutely rigid in the
frequency range considered, is referred hereafter as an elastic link.
The first type of SCM is a part of a VPM shown in Figs. 1a–d [7]. Their elastic links may have

specified properties moving along a straight-line path. Behavior of these elastic systems can be
studied using a schematic diagram shown in Fig. 1e. Here l0ð2� DÞ is the distance between
supports at initial strain state of elastic link pre-compressed in x direction, l0 is a length of
strainless ‘‘mother’’ element (e.g., a spring beam) of elastic link, D is the shortening of this link due
to pre-compression, j is an turning angle of elastic link under loading, F ðjÞ; in y direction.
The SCMs of the second type include elastic links with variable torsion negative stiffness. They

have appropriate property in the large angular displacements of movable connecting link 1
relative to the base link 0 constrained with the elastic link as shown in Fig. 2. The SCM elastic link
is a set of mother elements 10 designed in the form of multiply unbounded thin-plated structures
[11]. Supporting ends of each element are housed on the links 0 and 1. The thin plates work under
combined supercritical loading: they are pre-compressed in axial direction; then, by rotation of
the link 1 with the help of a drive, thin plates are loaded with the torque M ðaÞðjÞ: Here j is the
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angle of synchronous rotation of the link 1 and a driving link within deformation of the
SCM elastic link on the segment with torsion negative stiffness. In order to eliminate
lamination and, consequently, multiplicity of equilibria of the mother elements, the supporting
ends of thin plates on the base link 0 are inclined by an angle c: The inclination range is
determined from an empirical formula, c ¼ 1:08375j; under prescribed variations of pre-
compression. Fig. 2 shows that the lamination takes place on periphery of j-range if c ¼ 0; and
there is no lamination if c is varied. By proper c-variation, only the equilibrium of the SCM
elastic link is kept.
It is well known that pneumatic-mechanical controlled suspensions are the most effective means

among the commercial ones for vibration protection of a driver in the low and middle frequencies
[12–14]. At the same time, these VPMs have inadequate effectiveness in the infra-low-frequency
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Fig. 1. VPMs containing SCMs of the first type: (a)–(d) schematic diagrams for these VPMs [7]; (e) general schematic
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Fig. 2. A schematic diagram for SCM of the second type. Here are the base link (0), movable connecting link (1), an

insertion (2), and mother elements of elastic link (10).

C.-M. Lee et al. / Journal of Sound and Vibration 272 (2004) 643–655 645



band that the most harmful to human body (see Fig. 3). It was proved [10] that compact SCM of
the second type can be compatible with any commercial VPM. Therefore, similar suspension used
for the driver seat but modified with the help of SCM of the second type is considered as well
concerning its dynamic stability in the infra-low-frequency band.

3. On the methods of investigation of chaotic motion

Those systems that are termed chaotic have by definition completely determined parameters
and initial conditions in contrast to random systems. For an evaluation of dynamic stability and
to predict behavior of the systems mentioned above, the Lyapunov exponents were used as the
quantitative criteria of chaotic motion. The Lyapunov exponents allow measurement of the
sensitivity of the system to changes in initial conditions. In other words, how fast does the system
lose information about the initial state? For every dynamic process, either continuous time history
or discontinuous time evolution, there is a spectrum of Lyapunov characteristic numbers
indicating the expansion and contraction of initial volume of phase space under the flow or
discrete mapping. However, insofar as a criterion for chaos is concerned, one needs to calculate
only the largest exponent informing us of any nearby trajectories, which diverge or converge on
the average [1,15].
The Lyapunov largest exponent, for a system of governing equations in the form of

’x ¼ f ðxÞ ð1Þ

is considered as the averaged divergence rate of nearby solutions of Eq. (1) in some test time
interval. One of direct methods to calculate this rate is to assume that this divergence is locally
exponential and though consider, instead of Eq. (1), variational equations

’Z ¼ rf � Z; ð2Þ

where rf is the matrix of partial derivatives, rfi;j ¼ @fi=@xj:
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Fig. 3. Transmissibility of pneumatic-mechanical controlled suspensions. Here are the graphs 1 and 2 as in Ref. [12];

graph 3 as in Ref. [13].
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The Lyapunov largest exponent could be calculated as average increment of variation vector
ZðtÞ during the test time interval ttest:

L ¼ lim
N-N

1

Nttest

XN

k¼1

log2
jZkðttestÞj
jZkð0Þj

: ð3Þ

In order to ensure maximum growth of divergence, the vector ZðtÞ is recalculated at each step so
that its orientation tends to the direction of maximum divergence

Zkð0Þ ¼
Zk�1ðttestÞ
jZk�1ðttestÞj

: ð4Þ

In this case, dynamic stability of different mechanisms is described in terms of chaotic diagrams
(or maps) in the parameter space. Two parameters are considered as variable: frequency and
amplitude of external excitation. Using Eq. (3), the Lyapunov largest exponent is calculated for
each 100	 100 points in the parameter space under conditions, N ¼ 50 and ttest ¼ 10:
This method can provide reliable results during a short time and with a minimal computational

burden. Computational scheme was tested subject to well-known and widely described Duffing
oscillator [1,16]. In addition, these results were partially proved by analysis of the Poincar!e map of
attractors in the phase space and their correlation dimensions. The trajectories at some of
specified points on the chaos diagrams were computed by approaches described in details, e.g., in
Refs. [1,17,18].

4. Analysis of dynamic stability of the elastic systems

4.1. SCMs of the first type

Consider SCM of the first type by Fig. 1e. Stable equilibria of this system exist when

j ¼ j0 ¼ 7 cos�1ð1� DÞ: ð5Þ

A non-dimensional governing equation of the SCM motion could be found easily, e.g., by the
LaGrange method. In this case, potential energy and scaled kinetic energy of elastic system are

Ep ¼ kl20
1� D
cosðjÞ

� 1

� �
;

Ek ¼
ml0

3

’j2

t2
¼ dkl0 ’j2; ð6a;bÞ

where k is the stiffness coefficient of the SCM elastic link, m is a suspended mass, t is the period of
the system free oscillations, and also d ¼ 2Dð2� DÞ=ð1� DÞ2:
Using expansion of derivative, @Ep=@j; of potential energy by Eq. (6a), the effective stiffness of

the SCM elastic link in rotation near j ¼ j0 could be found as K ¼ kdl20 : As a time scale, the
period of free oscillations is chosen in the vicinity of one of equilibria, i.e., t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð3dkÞ

p
:
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A damping force R can be expressed as

R ¼ m
’j
t
¼ D

ffiffiffiffiffi
3d

p
’j; ð7Þ

where m is the friction coefficient.
Finally, after appropriate substitutions and transformations, non-dimensional equation of free

oscillations of SCM of the first type is obtained in the following form:

.j ¼ F ðjÞ þ D� ’j: ð8Þ

Here are the balancing elastic force and scaled damping ratio, respectively:

F ðjÞ ¼
1� D
d

1�
1� D
cosðjÞ

� �
sinðjÞ
cos2ðjÞ

;

D� ¼ D
ffiffiffiffiffi
3d

p
: ð9a;bÞ

Eq. (8), after proper substitutions, can be reduced to the equation of double-well potential
Duffing oscillator if the only cubic non-linearities are left in Taylor expansion of F ðjÞ in Eq. (9a).
To achieve the compatibility of results, geometrical parameters of elastic link of SCM of the

first type are matched so that to hypothetically expand its control range of negative stiffness up to
the range of negative stiffness of SCM of the second type in relation to angular displacements j.
Under this assumption, the force–displacement curve and the phase portrait for SCM of the first
type are shown in Fig. 4a.
The analysis procedure of chaotic motion of a similar but simplified system is given in details in

some publications (see, e.g., Ref. [19]). Using this approach, consider motion of SCM of the first
type under a periodic external force

f ðtÞ ¼ Ae�jot: ð10Þ

To substitute this into Eq. (8) in non-dimensional form, a normalizing factor for the amplitude
A of excitation is 1=ð2dkl20Þ; and frequency o is naturally non-dimensionalized by time scale t:
Fig. 5a shows the chaos diagram for SCM of the first type. Hereafter the shaded regions

correspond to positive values of the Lyapunov largest exponent and, i.e., to chaotic phase
trajectories of motion. As can be seen, the steady motion regions occupy a small part of the
parameter space considered. The regions of instability continue to exist even if the frequency of
excitation is increased 2–4 times. Chaotic and, respectively, unpredictable character of trajectories
in the unstable motion regions leads to loss of effectiveness of the VPMs, shown in Figs. 1a–d,
after the beginning of perturbation.

4.2. SCMs of the second type

A non-dimensional governing equation of motion of SCM of the second type (see Fig. 2) can be
also represented in the form similar to Eq. (8).
The torque M ðaÞðjÞ; caused from a drive, is balanced by the equivalent bending moment MðjÞ

due to elasticity of the SCM elastic link. It is expressed using numerical results of stress and strain
states’ analysis of the SCM elastic link [11]. These data can be interpolated by the polynomial of
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eighth grade as

MðjÞ ¼ � 0:044þ 0:21jþ 0:323j2 � 0:9146j3 � 5:686j4 � 19:41j5

� 33:22j6 � 182:88j7 � 84:815j8: ð11Þ

Non-dimensional function Eq. (11) is substituted into Eq. (8) in the following normalized form:

FðjÞ ¼
1

%k
Mðj� j0Þ; ð12Þ

Here the dimensionless stiffness factor, %k ¼ dMðjÞ=djjj¼j0
; is chosen so that the minimal

frequency of free oscillations near stable equilibrium is equal to the unit; j0 is the semi-range of
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Fig. 4. Force–displacement curves and phase-portraits, respectively, for: (a) SCM of the first type; (b) SCM of the

second type; (c) pneumatic-mechanical controlled suspension modified with the help of SCM of the second type.
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reciprocal rotation of the movable connecting link 1 while the elastic link 10 is in a unstable
equilibrium [11].
Fig. 4b shows the moment-angular displacement curve and the phase portrait for SCM of the

second type. As can be seen, one of differences between SCMs of the first and second types is the
asymmetry of both characteristics. But it is more important that the stiffness control range, in
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Fig. 5. Lyapunov exponent maps (chaos diagrams) for: (a) SCM of the first type; (b) SCM of the second type;

(c) pneumatic-mechanical controlled suspension modified with the help of SCM of the second type, here an evolution of

the suspension dynamic stability is shown depending on the damping ratio D:
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relation to angular displacements, of SCM of the second type is wider despite an attempt ad hoc
to hypothetically expand similar range for SCM of the first type up to comparable value.
The Lyapunov exponent map (see Fig. 5b) confirms that motion of SCM of the second type is

partly unstable in the parameter space as well. In addition, Fig. 6a shows the Poincar!e maps
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Fig. 6. Poincar!e maps of trajectories constructed at: (a) the points 1 and 2 on the diagram by Fig. 5b; (b) the points 1–4

on the diagram by Fig. 5c under D ¼ 0:06:
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plotted for parameters meeting at the points 1 and 2 on the chaos diagram by Fig. 5b. Sufficiently
non-integer correlation dimension of these Poincar!e maps (1.17 for point 1 and 1.79 for point 2,
respectively) proves the statement about chaotic character of motion. At the same time, the chaos
diagram for SCM of the second type essentially differs from the corresponding diagram for the
SCM by Fig. 1e. First, steady motion regions for SCM of the second type are wider and shifted to
the higher frequency bands.

4.3. Pneumatic-mechanical controlled suspension modified by SCM of the second type

Consider motion of a commercial pneumatic-mechanical controlled suspension, e.g., Ref. [13].
An additional damping mechanism (hydraulic absorber [20]) is removed from kinematic chain of
this suspension. At the same time, a driving link of the suspension guide mechanism is connected
in parallel with movable connecting link 1 of SCM of the second type via a transmission [10].
Fig. 4c shows the averaged force–displacement curves for elastic links of the suspension

modified with the help of similar SCM. Here the elastic characteristics for load-bearing elastic link
(air-spring), the SCM elastic link (with variable torsion negative stiffness), and for the aggregated
elastic link (with small ‘‘positive’’ stiffness) are shown with graphs 1–3, respectively.
For analysis of dynamic stability, the non-dimensional balancing elastic force F ðjÞ is expressed

as composition of the air-spring force Fa:�s:ðjÞ and force FSCMðjÞ of the SCM elastic link

F ðjÞ ¼ Fa:�s:ðjÞ þ FSCMðjÞ; ð13Þ

where j is the angle of synchronous reciprocal rotation of the suspension driving link and
movable connecting link 1 of the SCM while its elastic link has negative stiffness.
Let us express Fa:�s: for a simplest pneumatic air-spring that uses gas with adiabatic exponent a;

and also under initial conditions in volume V0 and pressure p0:

Fa:�s:pp � p0 ¼ p0
V ðjÞ

V0

� ��a

�1

� �

or

Fa:�s:ðjÞ ¼ C
1

s
ð1� s � jÞ�a � 1

� �
; ð14Þ

where the volume V0 and current value, VðjÞ; are expressed via the ratio s between the working
stroke (segment of effective stiffness control) of modified suspension and complete vertical stroke
determined from the air-spring compliance of initial suspension; C provides parameter control
and, respectively, frequency turning under given conditions of the suspension form factors.
In order to scale the force FSCMðjÞ with Fa:�s:ðjÞ; the function MðjÞ by Eq. (11) is normalized

FSCMðjÞ ¼
MðjÞ
s � a

: ð15Þ

Varying parameter C; it is possible to reduce stiffness of modified suspension up to very small
(quasi-zero) value in the enough expanded segment of angular displacements j as seen from
force–displacement force (Fig. 4c) that was proved experimentally [10]. The phase portrait shows
that this elastic system has sufficient non-linearity, at the same time, there are not ‘‘potential
wells’’.
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Fig. 5(c) demonstrates the Lyapunov exponent maps constructed to evaluate dynamic stability
of modified suspension within the damping ratio limits of D ¼ 0:025� 0:09: It was proved that the
damping can be reduced up to this level if to remove an absorber. And also, steady motion of the
suspension in the infra-low-frequency band is possible if damping will be of DA½0:025; 0:06
under proper stiffness control [10]. These maps indicate that motion of modified suspension is
significantly more predictable (non-chaotic) then behavior of a VPM containing SCM of the first
type. Here, non-dimensional frequency of excitation is normalized in the same manner as within
analysis of behavior of separate SCM of the second type.
Fig. 6b additionally confirms validity of assumptions that steady motion of controlled

suspension modified with the help of SCM of the second type is possible under proper stiffness
control and small damping. The Poincar!e maps of phase trajectories are plotted here at the points
marked by numbers 1–4 on the diagram in Fig. 5c under D ¼ 0:06: The points 1–3 correspond to
chaotic trajectories representing strange attractor. Correlation dimensions of these maps are equal
to 1.21 (point 1), 1.5 (point 2) and 1.15 (point 3), respectively, and indicate the fractal nature of
trajectories. Also, point 4 lies close to point 2 but does not belong to the unstable region. The
Poincar!e map for point 4 shows that the trajectory, although being rather complicated, consists of
a number of periodic and almost-periodic trajectories that are well-defined and are not chaotic.
Hence, the SCM of the second type has a tendency to chaotic oscillations in itself. But, being

attached to a VPM, it cannot destabilize motion of the aggregate system except for the discrete
infra-low frequencies. The system motion is steady including main segment in the infra-low-
frequency band if DX0:06: However, in the discrete frequencies dynamic stability could be lost
without stiffness servo control that was predicted in Ref. [10]. Solving this special problem,
assume that the force–displacement curve for the VPM has a piecewise linear segment 1, where
stiffness is small but positive, and segments 2 which bound the working stroke. Instability can
appear when the average values of amplitude AðjÞ are beyond segment 1 (see Fig. 7a). On
segment 1, equation of motion of modified VPM can be described as following:

.jþ D� ’jþ %kj ¼ AðjÞcos½ot: ð16Þ
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Fig. 7. On criterion of dynamic stability of pneumatic-mechanical controlled suspension modified with the help of

SCM of the second type: (a) a simple piecewise linear model of the elasticity ‘‘inversion’’; (b) steady motion regions.

C.-M. Lee et al. / Journal of Sound and Vibration 272 (2004) 643–655 653



Solution of Eq. (16) at steady state oscillations has the following form:

js ¼ AðjÞ
ð %k � o2ÞcosðotÞ þ D�o sinðotÞ

%k2 � ð2 %k � D�2Þo2 þ o4
: ð17Þ

The averaged amplitude of these oscillations is

o
p

Z 2p=o

0

j2
s dt ¼

A2

%k2 � ð2 %k � D�2Þo2 þ o4
; ð18Þ

where js is the angular displacement within limits of segment 1, i.e., within 2 s. Then the criterion
of dynamic stability of modified VPM in complete infra-low-frequency band is the following:

%k2 � ð2 %k � D�2Þo2 þ o4
X

A2

s2
: ð19Þ

It is remarkable that elasticity of the VPM can be inverted by servo control nearby j %kE0j: It
means that stiffness can be changed either up to positive but small value (see the curve 3 in Fig. 4c)
that leads to minimum of transmissibility KT during steady state motion or up to negative but also
small value, as shown in Fig. 7a, that is adequate to the damping increasing up to critical level
during a transient.
Fig. 7b shows the steady motion regions appropriating to the criterion by formula (19). There is

a correlation between these results and the Lyapunov exponent calculation (see Fig. 5c under
D ¼ 0:06). The curvilinear line is a boundary of dynamic stability in the complete infra-low-
frequency band of vibration of controlled suspension modified by SCM of the second type. The
pinholes around the line mean that the small non-linearity of the elastic characteristic takes place.

5. Conclusions

The Lyapunov largest exponent and Poincar!e map of trajectories methods allow to clearly
compare immanent predisposition of SCMs of various types to chaotic motion. The methods can
provide reliable results during a relatively short time and with a minimal computational burden.
Hence, select type and design optimization of the SCMs can be more accurate using these
methods.
Numerical results demonstrate a visualization and effectiveness of the methods to analyze

dynamic stability as well as predict behavior of a controlled VPM modified by SCM of the second
type (containing elastic links with variable torsion negative stiffness). The validity of the
evaluations, done by the experiments, concerning new approaches improving vibration protection
by means of SCMs has been confirmed through this study. In particular:

1. The SCM has a tendency to chaotic vibration in itself. But, being inserted into a controlled
VPM, it cannot destabilize motion of aggregate elastic system.

2. Inserting the SCM into a controlled VPM and simultaneous removing an additional damper
can increase mechanical Q-factor in the infra-low-frequency band though without loss of
dynamic stability under conditions of small damping and proper stiffness servo control. In
turn, this allows us to increase quality of vibration protection by dozens of times during steady
state motion of the VPM, which is almost insuperable using a lot of well-known approaches. It
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seems to be very important for men-operators and many forms of equipment operating, e.g., in
transport.

3. Short-time elasticity ‘‘inversion’’ of SCM by the servo control near small (quasi-zero) values of
stiffness can be adequate to the damping increasing up to critical level during a transient.
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